

# CO<sub>2</sub>-Neutral Fuels

**By Adelbert Goede** 

a.p.h.goede@differ.nl



#### Kopernikus-P2X













# Driver of the Energy Transition CO<sub>2</sub> Emission Reduction



- Global CO<sub>2</sub> emissions from energy use roughly flat in 2016 (source BP)
- Year-on-year increase of 0.1% is well below 10-year average 1.6%
- Improved energy efficiency and slowing global economy partly responsible
- China world's largest CO<sub>2</sub> emitter, but emissions fell by 41m tonnes in 2016
- India's 2016 CO<sub>2</sub> emissions increased by 114m tonnes
- In 2016 the Asia-Pacific region produced half of global CO<sub>2</sub> emissions, up from 25% in 1990

Source: Economist, Jun 17th 2017



# Global CO<sub>2</sub> emission: EU 10.5%, NL 0.5%

# NL CO<sub>2</sub> emission budget

- Power and Lightning (electricity) 26%
- Low temperature heat (domestic) 18%
- High temperature heat (industry) 19%
- Transport (cars, ships, planes) 17%
- Non-energy emissions (agriculture, waste, feedstock) 20%

typically 20: 20: 20: 20: 20



# 2050 CO<sub>2</sub> emission reduction targets

# 2050 UNFCCC agreement and EU Directives:

- CO<sub>2</sub> emission 80% to 95% below 1990 level
- Transportation: 60% CO<sub>2</sub> emission reduction
- Aviation: 40% sustainable fuel by 2050
- UN-ICAO: emissions 50% below 2005 level

Transportation sector: challenge to meet CO<sub>2</sub> reduction target, aviation being case in point



# **Energy Demand: The Netherlands (2015)**



Electricity demand almost flat throughout the year ± 10% [GWh/day]



Gas demand (mainly heat): seasonal variation factor 4 [GWh/day]



# UK energy demand: Electricity, Gas and Transportation

#### Great Britain energy data



Data are publicly available from National Grid, Elexon and BEIS. Charts are licensed under an Attribution-NoDerivatives 4.0 International license based on article <a href="https://journal.frontiersin.org/article/10.3389/fenrg.2016.00033/full">https://journal.frontiersin.org/article/10.3389/fenrg.2016.00033/full</a>

grant.wilson@sheffield.ac.uk

### Seasonal and inter annual energy demand UK

- Transport: approx. flat over the year
- Electricity: ± 10% seasonal variation
- Gas: factor 5 seasonal variation and 2x electricity demand



# Supply of Renewable Electricity - NL 2015





**Sun**: out of phase with seasonal heat demand at N-EU latitude Winter insolation 10% of summer

In phase with diurnal demand, but not quantitatively: surplus during day, shortage at night

Wind: seasonal variation factor 2 to 3 in phase with heat demand but not quantitatively. intermittent, with large dynamic range (factor 100)

Mix sun and wind 75%-25% projected by IEA not optimal

Figures in GWh/day



# **Projected Surplus Renewable Electricity**

Current renewable energy scenarios rely on PV and Wind electricity This leads to surplus electricity, whilst back-up power is still required

#### **Netherlands**

- 2025: 1.5TWh (12GW wind)

- 2050: 30-55TWh

#### <u>Germany</u>

- 2035: 34.5 TWh

- 2050: 110-148 TWh

#### **France**

- 2030: 15 TWh

-2050: 44-91 TWh

Need for large scale electricity storage on time scales ranging from msec to inter-annual in order to match renewable electricity supply with demand



# **Energy Supply by Renewables**

# Two concepts:

- Direct conversion Solar photons into Fuel (Artificial Photosynthesis). Early days.
- Indirect conversion solar to electricity (PV, wind, waves, rivers). Followed by Electricity to Fuel = Power to X
- This P2X scheme is more advanced compared with AP
- As electricity makes up only 20% of demand, conversion into other energy sectors is needed: Sector Coupling
- Difficult to meet heat demand by renewable electricity:
   Capacity of the grid to be increased 3 to 5 times. Electricity transport is costly compared with gas (factor 20-40), whilst running idle half of time
- Difficult to meet transportation demand by electricity. Urban transport feasible, but long haul transportation probably not.



# **Energy Storage Systems**



# Energy Storage Capacity and discharge power

Chemical Energy Storage Energy density and Specific energy high





# Sustainable Aviation Fuel - Hydrogen

**Hydrogen** low volumetric energy density: 3000 below **kerosene** limits storage, transport and usage as a fuel

- liquefied at 20K still factor 3.7 lower energy density,
- pressurised at 700 bar factor 6.4 lower energy density
- Safety aspects: highly flammable
- LH2 Aircraft gas turbine redesign/qualification to operate cryogenic fuel
- New fuel system, new ground handling and storage (boil-off).
- Fuel to be stored in fuselage rather than wings, because of volume and heat transfer.
- Increased drag and fuel consumption
- Reduced lift-off weight

#### **DLR H2 Antares**

Hydrogen Fuel Cell powered one seater glider 36 kW PEM Fuel Cell @ 80 kg 10 kWh battery 45-60kW @ 50kg





# Sustainable Aviation fuel - Batteries

**Batteries** good for Urban transport, no air pollution, no noise, future self-driving/ride sharing/big-data also electricity dependent

Long Haul Transportation: Energy density most advanced Li-ion battery is factor 14 lower than kerosene, by weight factor 50 lower
Battery powered airbus 380 needs 14.000 ton battery, instead of 260 ton kerosene > It will never take off

Long haul road transport, shipping and aviation are unlikely to be powered by electricity or hydrogen in the 2050 time frame

Current EU Policy directed at **bio fuel**. However, biofuels do not meet sustainability and resource requirements set by projected 2050 global fuel demand. Example: 5 m barrels kerosene per day for jet fuel alone. Social Acceptance problem: Fuel vs. Food vs. Flora trilemma



# CO<sub>2</sub> Neutral fuels

CO<sub>2</sub> Neutral Fuels offer an Alternative Sustainable Fuel Characterised by high energy density and existing infrastructure for Energy Storage, transport and distribution

# **Hydrocarbons** synthesised from water and air

- powered by Renewable Electricity
- CO<sub>2</sub> recirculation after use

Power2X connects sectors: electricity to gas, to oil and to chemical sector.
Solves surplus, storage and transport by electricity





# Carbon neutral fuel cycle: P2X - CCU

Point source capture of fossil CO₂

→ not climate neutral, emission delayed

# Renewable/ nuclear energy Dissociation of CO<sub>2</sub>/H<sub>2</sub>O CO Industrial plant with CO<sub>2</sub> capture CO<sub>2</sub> Renewable/ nuclear energy CO<sub>2</sub> H<sub>2</sub> Fuel synthesis H<sub>2</sub>O

Power-to-X

X = gas or liquid fuel or chemicals

Direct air capture of CO₂

→ climate neutral fuel cycle



P2X + CCU

CCU: carbon capture and utilisation

Graves et al., Ren. Sustain. Energy Rev. 15, 1, (2011)

#### P2X is most critical part both technically and economically

Technology benchmark: costs of H<sub>2</sub>

- Electrolysis >6 €/kg H<sub>2</sub> (fossil fuel <1 €/kg H<sub>2</sub>)
- CO<sub>2</sub> capture: point source 40 €/tonne, direct air 400 €/tonne



# From H<sub>2</sub>O and CO<sub>2</sub> to sustainable hydrocarbons



# Sustainable Aviation Fuel



Input: surplus wind electricity followed by **P2G**Output: synthetic methane
for **long-term**, **large-scale storage**Feedstock: CO<sub>2</sub> and H<sub>2</sub>O
Storage capacity Dutch gas system 552TWh
Recycling CO<sub>2</sub> emitted by re-capture from air

Research challenge: raise TRL from 2 to 5 CO<sub>2</sub> direct air capture, Efficient CO<sub>2</sub> and H<sub>2</sub>O splitting by electrolysis and plasmolysis, Gas separation

Sustainable aircraft grade Kerosene from Water and Air powered by Renewable Electricity, through splitting CO<sub>2</sub>, formation Syngas and Fischer-Tropsch synthesis.



# Splitting H<sub>2</sub>O and/or CO<sub>2</sub> by electrolysis

- Alkaline electrolyte (100 yrs large scale mature technology)
  - Power density low (< 0.5W/cm²)</li>
  - Low hydrogen output pressure (< 30bar)</li>
  - Safety (caustic electrolyte)
- PEM (polymer electrolyte membrane), pre-commercial
  - Power density ~1W/cm²
  - Rapid dynamic response
  - Degradation membrane
  - Catalyst material Pt, Ir (Scarce)
  - MW unit (Siemens)
- SOEC (solid-oxide electrolyser cell)
  - High power density, energy efficiency, output pressure
  - High Temperature operation (800°C and pressure 50-100 bar)
  - Co-electrolysis H<sub>2</sub>O and CO<sub>2</sub>
  - Degradation under high current density operation



# Principle of Solid Oxide Electrolysis Cell

External dc voltage pumps  $O^{2-}$  ions from porous **cathode** (Ni/YSZ) through dense solid **electrolyte** (YSZ = Yttrium Stabilised Zirconium) to porous **anode** (LSM/YSZ =  $La_{1-x}Sr_xMnO_3/YSZ$ )





# Why plasma for CO<sub>2</sub> conversion?

# Characteristics of CO<sub>2</sub> plasmolysis

Ease conditions for CO<sub>2</sub> splitting by channelling energy in molecular vibration to break chemical bond, not to heat the gas (non-equilibrium)

- Energy efficiency comparable to Electrolysis (~60% demonstrated)
- High productivity: large gas flow and power flow density (45W/cm²)
- Fast dynamic response to intermittent power supply
- No scarce materials employed (Pt catalyst in PEM)



#### 30 kW @ 915 MHz





# RF plasma discharge





# Out of equilibrium $T_{vib} > T_0$ chemistry

#### Chemical reaction scheme

$$CO_2 \rightarrow CO + O \qquad (\Delta H = 5.5 \text{ eV})$$

$$(\Delta H = 5.5 \text{ eV})$$

followed by reuse energetic O radical

$$CO_2 + O \rightarrow CO + O_2$$
 ( $\Delta H = 0.3 \text{ eV}$ )

Net

$$CO_2 \rightarrow CO + \frac{1}{2}O_2 \quad (\Delta H = 2.9 \text{ eV})$$

#### Efficiency to be increased by

Concentration of electron energy on vibrational excitation of CO<sub>2</sub> in asymmetric stretch mode



#### Arrhenius/Fridman:

Activation energy reduced by vibration energy  $k = A \exp (\alpha E_v - E_a)/kT$ 



# **Experimental Results**

# CO and O<sub>2</sub> production as function **RF Power**





# **Experimental Results**

# CO production as function Gas flow



10 kW RF absorbed
75 slm CO2, conversion 10% CO
(non optimised for safety risk)
Pressure 500 mbar,
Energy Efficiency 30%

23 / 30



# **Optical Emission Spectroscopy**



- CO 3<sup>rd</sup> positives, 4<sup>th</sup> positives, Angstrom and triplet bands identified.
- CO line intensity increases linear with power in supersonic regime



# **Experimental Results**





# **Experimental Results**





# Separation of CO, O<sub>2</sub>, CO<sub>2</sub> mixture

SOC oxygen separation membrane integrated with plasma reactor.

Lanthanum based perovskites show superior oxygen flux

YSZ or SDC electrolyte sandwiched between perovskite electrodes:

LSM/YSZ or LSCF oxygen electrode, Ni/YSZ or LSCM plasma electrode.

Plasma sheath electric field meets with electrode polarisation critical I/F





#### Conclusions

- P2X can provide vast seasonal energy storage capacity and flexibility of supply from Renewable Electricity though sector Coupling
- P2X enables distributed small scale production plants (Ex. Ammonia or CO)
- P2X-CCU enables a CO<sub>2</sub> neutral fuel cycle based on hydrocarbons and existing infrastructure
- Technical challenge: innovation in CO<sub>2</sub> splitting and CO-O<sub>2</sub> separation
- Economic challenge: cost reduction, business case expected to emerge around 2030, when cost of CO<sub>2</sub> reach € 200/ton



# **Future Energy System**

- Next 20 years: fundamental shift in the way energy is generated, stored, delivered, valued and purchased
- Critical element: conversion renewable electricity into fuel
- Coupling of renewable electricity to the other 80% of CO<sub>2</sub> emitting sectors, including low and high temperature heat, transportation and chemical feedstock
- Incremental improvement: role of Industry
- Novel concepts, game changers: role of fundamental energy research
- Driver: CO2 reduction targets, International (UNFCCC), EU directive (RED),
   National Policy. Targets for 2030 and 2050 are set, but
- Road to get there is largely unchartered



Thank you for your attention!

a.p.h.goede@differ.nl